Abstract

Saponins are secondary metabolites that are widely distributed in the plant kingdom and are often the active components in medicinal herbs. Hence, saponins have a potential for the pharmaceutical industry as antibacterial, virucidal, anti-inflammatory, and anti-leishmanial drugs. However, their commercial application is often hindered because of practical problems, such as low and variable yields and limited availability of natural resources. In vitro cultures provide an alternative to avoid problems associated with field production; they offer a system in which plants are clonally propagated and yield is not affected by environmental changes. Additionally, treatment of in vitro cultures with elicitors such as methyl jasmonate may increase the production of saponins up to six times. In vitro cultures are amenable to metabolic engineering by targeting specific genes to enhance saponin production or drive production towards one specific class of saponins. Hitherto, this approach is not yet fully explored because only a limited number of saponin biosynthesis genes are identified. In this paper, we review recent studies on in vitro cultures of saponin-producing plants. The effect of elicitation on saponin production and saponin biosynthesis genes is discussed. Finally, recent research efforts on metabolic engineering of saponins will also be presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call