Abstract

Aquaculture and fisheries have provided protein sources for human consumption for a long time, but diseases have induced declines in product benefits and raised concerns, resulting in great losses to these industries in many countries. The overuse of antibiotics for the treatment of diseases has increased the chemical concentrations in culture systems and weakened the natural immunity of aquatic organisms. Concerns regarding the detrimental effects of antibiotics on the environment and human health due to residual antibiotic-related issues encourage the development of reliable, environmental and health safety methods, such as vaccines, probiotics, prebiotics, synbiotics and phytobiotics, for protection against disease and for reducing and possibly eliminating disease occurrence. Immunity has been effectively enhanced by pro-, pre-, and synbiotics, which confer strong protection and reduce the risks associated with stressors and disease outbreaks in culture systems. These agents confer several benefits, including enhancing both host growth and immune responses against pathogens, while sustaining health and environmental stability, and their use is thus widely accepted. Alterations in gene expression in individual cells could serve as an indicator of the immunity and growth rate of aquatic animals after pro-, pre- and synbiotic feeding. This review addresses the potential use of pro, pre- and synbiotics as immunostimulants for improved aquaculture management and environmental health and chronicles the recent insights regarding the application of pro-, pre- and synbiotics with special emphasis on their immunomodulatory and antioxidative responses based on gene expression changes. Furthermore, the current review describes the research gaps and other issues that merit further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.