Abstract
Thermo-responsive (TR) hydrogels of the LCST (low critical solution temperature) type swell noticeably below their volume phase transition temperature Tc and collapse above Tc. Biomedical applications of these gels (in particular, for controlled delivery of nuclear acids and genes) require fine tuning of the critical temperature. Modulation of Tc is conventionally performed by copolymerization of TR monomers with monomers whose hydrophilicity is higher or lower than that of the main monomers. The most pronounced changes in Tc are observed when TR monomers are copolymerized with anionic or cationic monomers. Introduction of polyelectrolyte monomers into the polymer network induces a strong dependence of its properties on pH and ionic strength of an aqueous solution. A constitutive model is developed to describe the effects of pH and molar fraction of salt in a solution on the critical temperature of TR polyelectrolyte hydrogels. Adjustable parameters are found by fitting equilibrium swelling diagrams on copolymer gels with strongly and weakly dissociating cationic functional groups. The ability of the model to predict Tc is confirmed by comparison of experimental data with results of simulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.