Abstract

The viscoelastic response of supramolecular gels (whose polymer networks are formed by chains bridged by supramolecular and dynamic covalent bonds) can be tuned in a rather wide interval by changes in chemistry of the surrounding solutions. This property plays an important role in biomedical applications of these materials for stem cell therapy, regenerative medicine, and neuromodulation. A simple model is developed in finite viscoelasticity of supramolecular gels. An advantage of the constitutive equations is that they involve only three material parameters. The ability of the model to describe experimental data is confirmed by fitting observations on hyaluronic acid gels, poly(ethylene glycol) gels, and poly(acrylamide) gels with reversible bonds in uniaxial tensile and compressive tests with large strains and in small-amplitude shear oscillatory tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.