Abstract

The biosynthesis of phosphatidylserine in mammalian tissues is catalyzed by the serine base exchange enzyme. The activity of this membrane-bound enzyme can be manipulated by amphiphiles. Amphiphilic cations, such as oleylamine, W-7, chlorpromazine, and didodecyldimethylamine, stimulate the serine base exchange activity. Amphiphilic anions, such as bis(2-ethylhexyl) hydrogen phosphate and cholesterol sulfate, inhibit the serine base exchange activity. These effects are more pronounced at pH 7.0 than at the pH optimum of 8.5 for this enzyme. Both the stimulators and the inhibitors alter the Vmax values without changing the Km value for serine, suggesting that their mechanism of action is related to interactions of the membrane-bound cosubstrate, phosphatidylethanolamine, with the membrane-bound enzyme. The optimal concentration of stimulator varies with the amount of membrane protein present; however, supraoptimal concentrations cause inhibitions. It is proposed that the amphiphilic cations enhance the interaction of the phosphorylethanolamine moiety of the membrane-bound cosubstrate with the enzyme and the amphiphilic anions interfere with such an interaction. Some of the pharmacological properties of these amphiphilic cations, employed clinically as antidepressants, may be mediated by modulation of the serine base exchange enzyme activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call