Abstract

AbstractWith two 25‐hour series of turbulent microstructure and currents observations carried out in August 2013, during spring (CHAOS 1) and neap tides (CHAOS 2), we investigated the semidiurnal cycle of turbulent dissipation in an embayment affected by coastal upwelling (Ría de Vigo, NW Iberia). At the time of sampling, the bay hosted a net, wind‐driven bi‐directional positive exchange flow and thermal stratification. Turbulent kinetic energy (TKE) dissipation (ɛ) at the interface between upwelled and surface waters was enhanced by two orders of magnitude during the ebbs ( W kg− 1) with respect to the floods ( W kg− 1). This pattern was caused by the constructive interference of the shear associated with the upwelling and tidal currents. The vertical structure of the tidal currents was consistent with a deformation of tidal ellipses by stratification, which was tightly coupled to the intensity of upwelling. This two‐pronged interaction resulted in a modulation of the semidiurnal cycle of turbulent dissipation by coastal upwelling. Thus, as a result of the upwelling relaxation conditions experienced during CHAOS 1, depth‐integrated interior TKE dissipation rates were higher, by a factor of , compared to CHAOS 2. By using a simple model, we determined that observed variations in turbulent mixing had a limited influence on the tidal variations of stratification, which were dominated by straining and advection. The mixing mechanism described here is potentially relevant for the ecology of upwelling bays, as it can stimulate the transport of nutrients from deep‐upwelled waters to the sun‐lit surface layers where primary production takes place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.