Abstract

This work reports a detailed structure-property relationship study of a series of efficient host materials based on the donor-spiro-acceptor (D-spiro-A) design for green and sky-blue phosphorescent organic light-emitting diodes (PhOLEDs). The electronic and physical effects of the indoloacridine (IA) fragment connected through a spiro bridge to different acceptor units, namely, fluorene, dioxothioxanthene or diazafluorene moiety, have been investigated in depth. The resulting host materials have been easily synthesised through short, efficient, low-cost, and highly adaptable synthetic routes by using common intermediates. The dyes possess a very high triplet energy (ET ) and tuneable HOMO/LUMO levels, depending on the strength of the donor/acceptor combination. The peculiar electrochemical and optical properties of the IA moiety have been investigated though a fine comparison with their phenylacridine counterparts to study the influence of planarisation. Finally, these molecules have been incorporated as hosts in green and sky-blue PhOLEDs. For the derivative SIA-TXO2 as a host, external quantum efficiencies as high as 23 and 14 % have been obtained for green and sky-blue PhOLEDs, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.