Abstract

A novel approach to modulating the inductance of a superconducting microstrip is described. This approach could be the basis for numerous practical applications, such as phase-shifters and high-frequency tuning elements. The physical mechanisms involved are quasiparticle injection, gap suppression, and penetration-depth modulation. The authors have investigated the modulation of the penetration depth of niobium and niobium nitride films by excess quasiparticle injection. To this effect, all niobium and all-niobium-nitride SQUID (superconducting quantum interference device) circuits were designed and fabricated. These circuits allow quasiparticle injection into the inductive element of the SQUID. This injection is achieved by optical irradiation through an opening in a Nb reflective layer which partially masks the rest of the circuit or electronic current injection through a tunnel junction overlaid on the microstrip inductance. Penetration-depth modulation is achieved with both methods. The magnitude of the effect varies from 10% to over 200% change in inductance.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.