Abstract

The impact of the El Nino-Southern Oscillation (ENSO) on the Madden-Julian Oscillation (MJO) is studied, based on reanalysis data and output from an ensemble general circulation model (GCM) exper- iment. Observed monthly sea surface temperature variations over the period of 1950-99 are imposed in the deep tropical eastern/central Pacific in the course of the SST experiment. Both GCM, and reanalysis data, indicate that intraseasonal activity of the low-level zonal wind is enhanced (reduced) over the cen- tral (western) Pacific during El Nino events. The propagation and growth/decay characterisitcis of the MJO in different phases of ENSO is also examined, based on a lag correlation technique. During warm events there is an eastward shift in the locations of strong growth and decay, and the propagation of the MJO becomes slower in the warm ENSO phase. These changes are reversed during La Nina epsiodes. Using output from the GCM experiment, the effects of ENSO on the circulation and convection during the MJO lifecycle are studied in detail. Further eastward penetration of MJO-related convection is si- mulated during warm events over the central Pacific. An instability index related to the vertical gradient of the moist static energy is found to be useful for depicting the onset of MJO convection along the equator. During warm events, the stronger magnitudes of this index over the central Pacific are condu- cive to more eastward penetration of convective anomalies in the region. These changes are mainly due to the intensified moisture accumulation at low levels. Analysis of the moisture budget suggests that the stronger moisture accumulation can be related to the increased low-level humidity over the central Pa- cific during warm events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.