Abstract
Single-unit activities of the bulbar reticular inspiratory neurons directly projecting to hypoglossal motoneurons were studied during fictive ingestion (e.g., swallowing) and rejection elicited by repetitive stimulation of the superior laryngeal nerve and by application of water to the pharynx in immobilized decerebrated cats. The single-unit activity was recorded during 113 episodes of fictive ingestion from 25 inspiratory neurons directly projecting to hypoglossal motoneurons (single projection neurons) and 7 inspiratory neurons directly projecting to both hypoglossal and phrenic motoneurons (dual projection neurons) in the regions ventrolateral to the nucleus tractus solitarii and dorsomedial to the nucleus ambiguus. All of single projection neurons ceased inspiratory-related rhythmical discharges coincidentally with the onset of repetitive stimulation of the superior laryngeal nerve. The majority of them (19/25, 76%, type A) showed a spike burst during ingestion, whereas the minority (6/25, 24%, type B) kept silent until the end of repetitive stimulation of the superior laryngeal nerve. During fictive ingestion elicited by application of water to the pharynx, the type-A neurons showed a spike burst activity, whereas the type-B neurons kept silent. All dual projection neurons (7/7, 100%, type C) ceased inspiratory-related rhythmical discharges at the onset of repetitive stimulation of the superior laryngeal nerve and showed no activity during fictive ingestion. Likewise, the type-C neurons kept silent during fictive ingestion elicited by application of water to the pharynx. A spike burst was induced during 33 episodes of fictive rejection in all of 5 tested type-A, 3 tested type-B, and 6 tested type-C neurons. It is concluded that the premotor neurons involved in the respiratory-related rhythmical activity of hypoglossal motoneurons is responsible for switching from respiration to ingestion and rejection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of neurophysiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.