Abstract

Liver toxicity and inflammation were assessed in C57BL/6, CBA, and BALB/c mice injected intravenously with a series of recombinant adenoviruses deleted simultaneously in E1/E3, in E1/E3/E2A, or in E1/E3/E4. All vectors were either devoid of transgenes or carried in E1 the human CFTR cDNA under the control of the CMV promoter. Injection of the E1/E3-deleted vector induced a significant liver dystrophy and inflammatory responses that were accompanied by an increased serum transaminase concentration. The vector toxicity remained elevated on additional deletion of the E2A gene and was further enhanced when hCFTR was expressed. In contrast, additional deletion of E4 led to a reduction in hepatotoxicity, suggesting an active role of E4 gene products in liver injury. However, deletion of E4 also led to a loss of transgene expression. To identify the individual E4 product(s) involved in liver toxicity and in the regulation of transgene expression, a series of isogenic E1/E3-deleted vectors, with or without the hCFTR transgene, and containing various combinations of functional E4 open reading frames (ORFs), were evaluated in vitro and in vivo. We demonstrate that liver injury was markedly reduced with vectors containing either ORF3 alone or ORF3,4 while vectors containing ORF4, ORF6,7 or ORF3,6,7 still displayed elevated hepatotoxicity and inflammatory responses. Moreover, transgene expression was restored when ORF3,4 or ORF3,6,7 was retained in the vector. These results highlight the importance of the E4 gene products in the design of improved in vivo gene transfer vectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.