Abstract

This study investigated the changes in the mRNA expression of transforming growth factor beta (TGF-β), plasminogen activators (PAs), and interleukin (IL) caused by sperm, as well as the regulatory mechanism of PA activity through TGF-β, in porcine uterine epithelial cells. The cells were isolated from the uterine horn of pig and co-incubated with Percoll-separated boar sperm (45% or 90%), or TGF-β for 24 h. The mRNA expression of TGF-β isoforms (TGF-β1, 2 and 3) and their receptors (TGF-β R1 and R2), PAs (urokinase-type, uPA; tissue-type, tPA; uPA receptor, uPAR; type 1 PA inhibitor, PAI-1), IL-6 and IL-8 was analyzed using real-time PCR. Supernatant was used to measure PA activity. Co-incubation with sperm from the 90% Percoll layer increased TGF-β1 mRNA, whereas TGF-β2 and TGF-β3 were decreased (P < 0.05). However, both TGF-βRs were not changed by the presence of the spermatozoa. Expression of tPA, PAI-1, IL-6, and IL-8 mRNA was down-regulated by 90% Percoll-separated sperm (P < 0.05), and sperm from 45% Percoll increased uPA expression (P < 0.05). TGF-β decreased tPA and IL-8 mRNA expression, and increased uPAR and PAI-1 mRNA (P < 0.05). The suppressive effect of TGF-β on PA activity was blocked by Smad2/3 and JNK1/2 signaling inhibitors (P < 0.05). In conclusion, sperm separated in 90% in porcine uterus could suppressed inflammation via modulation of TGF-β and down-regulation of PAs and ILs. Therefore, the regulatory mechanism of inflammation by sperm in the porcine uterus could be associated with interactions between numerous cytokines including TGF-β.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call