Abstract

1. In acutely isolated rat sacral dorsal commisural nucleus (SDCN) neurones, application of kainate (KA) reversibly potentiated glycine-evoked Cl- currents (IGly) in a concentration-dependent manner. 2. The cellular events underlying the interaction between non-NMDA receptors and glycine receptors were studied by using nystatin-perforated patch and cell-attached single-channel recording modes. 3. The action of KA was not accompanied by a shift in the reversal potential for IGly. In dose-response curves, KA potentiated IGly without significantly changing glycine binding affinity. 4. GYKI 52466 blocked while NS-102 had no effect on the KA-induced potentiation of IGly. 5. The potentiation was reduced when KA was applied in a Ca2+-free extracellular solution or in the presence of BAPTA AM, and was independent of the activation of voltage-dependent Ca2+ channels. 6. Pretreatment with KN-62, a selective Ca2+-calmodulin-dependent protein kinase II (CaMKII) inhibitor, abolished the action of KA. Inhibition of calcineurin converted the KA-induced potentiation to a sustained one. 7. Single-channel recordings revealed that KA decreased the mean closing time of glycine-gated single-channel activity, resulting in an increase in the probability of channel opening. 8. It is proposed that Ca2+ entry through AMPA receptors modulates the glycine receptor function via coactivation of CaMKII and calcineurin in SDCN neurones. This interaction may provide a new postsynaptic mechanism for control of inhibitory synaptic signalling and represent one of the important regulatory mechanisms of spinal nociception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call