Abstract

Most sympathetic neurons contain one or more neuropeptides in addition to catecholamines. Although the regulation of catecholamines has been studied extensively, comparatively little is known about the regulation of neuropeptides. Since glucocorticoids and preganglionic innervation regulate catecholaminergic properties in chromaffin cells, we examined the effects of these factors on a co-localized neuropeptide, leucine enkephalin (L-Enk), in adult rat sympathetic neurons in vivo. Lowered serum glucocorticoid levels as a consequence of bilateral adrenalectomy resulted in a reduction of ganglionic L-Enk content that was reversed by exposure of adrenalectomized animals to the synthetic glucocorticoid, dexamethasone. Surgical denervation of the SCG eliminated L-Enk-IR preganglionic fibers and caused a dramatic increase in the number of L-Enk-IR neurons. Inhibition of the enkephalinergic component of the preganglionic innervation by chronic exposure to the opiate receptor antagonist naloxone increases the number of L-Enk-IR cell bodies and total ganglionic L-Enk content. None of the experimental manipulations noticeably altered the number or distribution of NPY-IR neurons, suggesting that the effects of glucocorticoids and the innervation on ganglionic L-Enk levels were specific and not simply an alteration of the biosynthetic state of the cells. These results demonstrate that circulating glucocorticoids and the preganglionic innervation regulate L-Enk levels in sympathetic neurons. Since both glucocorticoid levels and preganglionic activity are known to be altered by stressful stimuli, acute regulation of sympathetic L-Enk levels may constitute an important component of the autonomic response to stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call