Abstract
It is shown that charged defect generation, through argon ion-based plasma processing, in few layer graphene, could substantially enhance the electrical capacitance for electrochemical energy storage. Detailed consideration of the constituent space charge and quantum capacitances were used to delineate a new length scale, correlated to electrically active defects contributing to the capacitance, and was found to be smaller than a structural correlation length determined through Raman spectroscopy. The study offers insights into an industrially viable method (i.e., plasma processing) for modifying and enhancing the energy density of graphene-based electrochemical capacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.