Abstract
An alternative material, methylamine (MA)-doped poly[3-(4-carboxymethyl)thiophene-2,5-diyl] (P3CT) as hole transport layer (HTL) was investigated for efficient solution-processed near-infrared perovskite light-emitting diodes (NIR PeLEDs). The best NIR PeLEDs performance was achieved with an optimized composition ratio of the MA-doped P3CT (1:1) due to the balance of the electron and hole carrier in the active layer. The charge-balanced NIR PeLEDs exhibit the highest radiance of 858.37 W sr−1 m−2, a low turn-on voltage of 1.82 V, and an external quantum efficiency of 7.44%. Our findings show that using P3CT as an alternative HTL has the potential to significantly improve PeLED performance, allowing it to play a role in the development of practical applications in high-power NIR LEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.