Abstract
The B-A transition of DNA in oriented films of DNA-drug complexes is more or less restricted as a consequence of drug binding as revealed by infrared linear dichroism. A fraction of DNA is irreversibly locked into the B form. This behavior is described by the number of DNA base pairs "frozen" in the B form by one drug molecule. This quantity is dependent on the DNA sequence the drug is attached to. In this paper, drug complexes of oriented films of NaDNA with a GC content of 42% from calf thymus and a GC-rich DNA from Micrococcus lysodeikticus were compared. The restriction of the B-A transition of DNA complexes with two intercalating antibiotics, aclacinomycin A and violamycin BI, is not severely influenced by the base composition of DNA. By contrast, the strong groove binding oligopeptide antibiotics netropsin and distamycin A are much less effective to restrict the B-A transition of GC-rich DNA than of AT-rich DNA. This finding is in agreement with previous results by other methods which support a model based upon a strong preference of AT clusters by these two non-intercalating drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.