Abstract

Local cutaneous heating causes vasodilation as an initial first peak, a nadir, and increase to plateau. Reactive oxygen species (ROS) modulate the heat plateau in healthy controls. The initial peak, due to C-fiber nociceptor-mediated axon reflexes, is blunted with local anesthetics and may serve as a surrogate for the cutaneous response to peripheral heat. Chronic fatigue syndrome (CFS) subjects report increased perception of pain. To determine the role of ROS in this neurally mediated response, we evaluated changes in cutaneous blood flow from local heat in nine CFS subjects (16-22 yr) compared with eight healthy controls (18-26 yr). We heated skin to 42°C and measured local blood flow as a percentage of maximum cutaneous vascular conductance (%CVC(max)). Although CFS subjects had significantly lower baseline flow [8.75 ± 0.56 vs. 12.27 ± 1.07 (%CVC(max), CFS vs. control)], there were no differences between groups to local heat. We then remeasured this with apocynin to inhibit NADPH oxidase, allopurinol to inhibit xanthine oxidase, tempol to inhibit superoxide, and ebselen to reduce H(2)O(2). Apocynin significantly increased baseline blood flow (before heat, 14.91 ± 2.21 vs. 8.75 ± 1.66) and the first heat peak (69.33 ± 3.36 vs. 59.75 ± 2.75). Allopurinol and ebselen only enhanced the first heat peaks (71.55 ± 2.48 vs. 61.72 ± 2.01 and 76.55 ± 5.21 vs. 58.56 ± 3.66, respectively). Tempol had no effect on local heating. None of these agents changed the response to local heat in control subjects. Thus the response to heat may be altered by local levels of ROS, particularly H(2)O(2) in CFS subjects, and may be related to their hyperesthesia/hyperalgesia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.