Abstract

The cell surface molecule ABCC10 is a broad-acting transporter of xenobiotics, including cancer drugs, such as taxanes, epothilone B, and modulators of the estrogen pathway. Abcc10(-/-) mice exhibit increased tissue sensitivity and lethality resulting from paclitaxel exposure compared with wild-type counterparts, arguing ABCC10 functions as a major determinant of taxane sensitivity in mice. To better understand the mechanistic basis of ABCC10 action, we characterized the biochemical and vectorial transport properties of this protein. Using crude membranes in an ABCC10 overexpression system, we found that the ABCC10 transport substrates estrogen estradiol-glucuronide (E(2)17βG) and leukotriene C4 (LTC(4)) significantly stimulated ABCC10 beryllium fluoride (BeFx)-sensitive ATPase activity. We also defined the E(2)17βG antagonist, tamoxifen, as a novel substrate and stimulator of ABCC10. In addition, a number of cytotoxic substrates, including docetaxel, paclitaxel, and Ara-C, increased the ABCC10 basal ATPase activity. We determined that ABCC10 localizes to the basolateral cell surface, using transepithelial well assays to establish that ABCC10-overexpressing LLC-PK1 cells exported [(3)H]-docetaxel from the apical to the basolateral side. Importantly, we found that the clinically valuable multikinase inhibitor sorafenib, and a natural alkaloid, cepharanthine, inhibited ABCC10 docetaxel transport activity. Thus, concomitant use of these agents might restore the intracellular accumulation and potency of ABCC10-exported cytotoxic drugs, such as paclitaxel. Overall, our work could seed future efforts to identify inhibitors and other physiologic substrates of ABCC10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.