Abstract

Lactoferrin (LTF), an iron binding protein, is known to exhibit immune modulatory effects on pulmonary pathology during insult-induced models of primary Mycobacterium tuberculosis (Mtb) infection. The effects of LTF correlate with modulation of the immune related development of the pathology, and altering of the histological nature of the physically compact and dense lung granuloma in mice. Specifically, a recombinant human version of LTF limits immediate progression of granulomatous severity following administration of the Mtb cell wall mycolic acid, trehalose 6,6'-dimycolate (TDM), in part through reduced pro-inflammatory responses known to control these events. This current study investigates a limited course of LTF to modulate not only initiation, but also maintenance and resolution of pathology post development of the granulomatous response in mice. Comparison is made to a fusion of LTF with the Fc domain of IgG2 (FcLTF), which is known to extend LTF half-life in circulation. TDM induced granulomas were examined at extended times post insult (day 7 and 14). Both LTF and the novel FcLTF exerted sustained effects on lung granuloma pathology. Reduction of pulmonary pro-inflammatory cytokines TNF-α and IL-1β occurred, correlating with reduced pathology. Increase in IL-6, known to regulate granuloma maintenance, was also seen with the LTFs. The FcLTF demonstrated greater impact than the recombinant LTF, and was superior in limiting damage to pulmonary tissues while limiting residual inflammatory cytokine production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call