Abstract

The protein phosphatase inhibitor okadaic acid was used to investigate the protein phosphatases involved in the endogenous dephosphorylation of proteins in intact synaptosomes. Despite the fact that the calcium-dependent protein phosphatase (calcineurin) is most concentrated in synaptosomes and accounts for approximately 0.3% of synaptoplasmic protein, the majority of the dephosphorylation activity under both basal and depolarisation conditions is due to protein phosphatase type 1 (PP1) and/or protein phosphatase type 2A (PP2A). Nevertheless our results do suggest that calcineurin is active in synaptosomes and has 2 effects: a rapid, direct dephosphorylation of a limited range of substrates and an indirect activation of PP1 presumably by dephosphorylation of protein phosphatase 1 inhibitor-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.