Abstract

Superficial zone protein (SZP)/lubricin/PRG4 functions as a boundary lubricant in articular cartilage to decrease friction and wear. As articular cartilage lubrication is critical for normal joint function, the accumulation of SZP at the surface of cartilage is important for joint homeostasis. Recently, a heterocyclic compound called kartogenin (KGN) was found to induce chondrogenic differentiation and enhance mRNA expression of lubricin. The objective of this study was to determine whether KGN can stimulate synthesis of SZP in superficial zone, articular chondrocytes. We investigated the effects of KGN and transforming growth factor-β1 (TGF-β1) on articular cartilage and synovium of the bovine knee joint by evaluating SZP secretion by enzyme-linked immunosorbent assay analysis. Monolayer, micromass, and explant cultures of articular cartilage, and monolayer culture of synoviocytes, were treated with KGN. SZP accumulation in the medium was evaluated and mRNA expression was measured through quantitative polymerase chain reaction. TGF-β1 stimulated SZP secretion by superficial zone chondrocytes in monolayer, explant, and micromass cultures as expected. In addition, SZP secretion was inhibited by IL-1β in explant cultures, and enhanced by TGF-β1 in synoviocyte monolayer cultures. Although KGN elicited a 1.2-fold increase in SZP mRNA expression in combination with TGF-β1, KGN neither stimulated any significant increases in SZP synthesis nor prevented catabolic decreases in SZP production from IL-1β. These data suggest that the chondrogenic effects of KGN depend on cellular phenotype and differentiation status, as KGN did not alter SZP synthesis in differentiated, superficial zone articular chondrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.