Abstract
VO2, as a promising material for smart windows, has attracted much attention, and researchers have been continuously striving to optimize the performance of VO2-based materials. Herein, nitrogen-incorporated VO2 (M1) thin films, using a polyvinylpyrrolidone (PVP)-assisted sol-gel method followed by heat treatment in NH3 atmosphere, were synthesized, which exhibited a good solar modulation efficiency (ΔTsol) of 4.99% and modulation efficiency of 37.6% at 2000 nm (ΔT2000 nm), while their visible integrated transmittance (Tlum) ranged from 52.19% to 56.79% after the phase transition. The crystallization, microstructure, and thickness of the film could be regulated by varying PVP concentrations. XPS results showed that, in addition to the NH3 atmosphere-N doped into VO2 lattice, the pyrrolidone-N introduced N-containing groups with N-N, N-O, or N-H bonds into the vicinity of the surface or void of the film in the form of molecular adsorption or atom (N, O, and H) filling. According to the Tauc plot, the estimated bandgap of N-incorporated VO2 thin films related to metal-to-insulator transition (Eg1) was 0.16-0.26 eV, while that associated with the visible transparency (Eg2) was 1.31-1.45 eV. The calculated Eg1 and Eg2 from the first-principles theory were 0.1-0.5 eV and 1.4-1.6 eV, respectively. The Tauc plot estimation and theoretical calculations suggested that the combined effect of N-doping and N-adsorption with the extra atom (H, N, and O) decreased the critical temperature (τc) due to the reduction in Eg1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.