Abstract

Mechanical ventilation can lead to lung biotrauma when mechanical stress exceeds safety thresholds. The authors investigated whether the duration of mechanical stress, that is, the impact of a stress versus time product (STP), influences biotrauma. The authors hypothesized that higher STP levels are associated with increased inflammation and with alveolar epithelial and endothelial cell injury. In 46 rats, Escherichia coli lipopolysaccharide (acute lung inflammation) or saline (control) was administered intratracheally. Both groups were protectively ventilated with inspiratory-to-expiratory ratios 1:2, 1:1, or 2:1 (n = 12 each), corresponding to low, middle, and high STP levels (STPlow, STPmid, and STPhigh, respectively). The remaining 10 animals were not mechanically ventilated. In animals with mild acute lung inflammation, but not in controls: (1) messenger RNA expression of interleukin-6 was higher in STPhigh (28.1 ± 13.6; mean ± SD) and STPlow (28.9 ± 16.0) versus STPmid (7.4 ± 7.5) (P < 0.05); (2) expression of the receptor for advanced glycation end-products was increased in STPhigh (3.6 ± 1.6) versus STPlow (2.3 ± 1.1) (P < 0.05); (3) alveolar edema was decreased in STPmid (0 [0 to 0]; median, Q1 to Q3) compared with STPhigh (0.8 [0.6 to 1]) (P < 0.05); and (4) expressions of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 were higher in STPlow (3.0 ± 1.8) versus STPhigh (1.2 ± 0.5) and STPmid (1.4 ± 0.7) (P < 0.05), respectively. In the mild acute lung inflammation model used herein, mechanical ventilation with inspiratory-to-expiratory of 1:1 (STPmid) minimized lung damage, whereas STPhigh increased the gene expression of biological markers associated with inflammation and alveolar epithelial cell injury and STPlow increased markers of endothelial cell damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.