Abstract
In this study, we explore the potential of functionalized two-dimensional (2D) diamond for spin-dependent electronic devices using first-principles calculations. Specifically, we investigate functionalizations with either hydroxyl (−OH) or fluorine (−F) groups. In the case of an isolated layer, we observe that the quantity and distribution of (−OH) or (−F) on the 2D diamond surface significantly influence the sp 2/sp 3 ratio of the carbon atoms in the layer. As the coverage is reduced, both the band gap and magnetic moment decrease. When the 2D diamond is placed between gold contacts and functionalized with (−OH), it results in a device with lower resistance compared to the (−F) functionalization. We predict that the maximum current achieved in the device increases with decreasing (−OH) surface coverage, while the opposite behavior occurs for (−F). Additionally, the surface coverage alone can alter the direction of current rectification in (−F) functionalized 2D diamonds. For all studied systems, a single spin component contributes to the total current for certain values of applied bias, indicating a spin filter behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.