Abstract

Modulation of sound waves for the laminar flow past a rotary oscillating circular cylinder has been studied for a free-stream Reynolds number Re = 150 and Mach number M = 0.2. Modulation of sound waves has been observed if the combination of applied rotary oscillation frequency and amplitude belongs to the nonsynchronous region where the hydrodynamic and acoustic quantities vary with the vortex shedding frequency as well as the applied forcing frequency. Two-dimensional direct numerical simulations (DNS) are carried out on a highly refined grid using high resolution physical dispersion relation preserving schemes for a nondimensional forcing frequency-ratio range 0.1 ≤ fr ≤ 2.0 at a nondimensional surface speed A1 = 0.1. Both the synchronous and the nonsynchronous zones are identified based on the time-varying fluctuations in the lift and the drag coefficients. In the nonsynchronous zone, modulation phenomena of the lift and the drag coefficients are explained by plotting the stream-function contours over multiple vortex shedding cycles. The modulation periods associated with the fluctuating lift and the drag coefficients are different for some cases. This particular observation is in contrast with the observation expressed in the previous studies investigating similar problems. Disturbance pressure fields obtained from the present DNS data are used to analyze the characteristics of radiated sound fields, especially in the nonsynchronous zone. Information related to aerodynamic sound sources has been obtained using approximated Lighthill’s stress tensor, and it is shown that the aerodynamic sound sources also display the modulation phenomenon similar to that observed in the vortex shedding process. Sound fields related to the nonsynchronous zone also exhibit the modulation phenomenon and are governed by the shedding frequency, the forcing frequency, and their linear combinations. Radiated sound field characteristics are further related to the time-varying fluctuations of the lift and the drag coefficients using Curle’s acoustic analogy. Modulated sound waves observed along the upstream and the transverse directions have similar time variation as that of the drag and the lift coefficients, respectively. The phenomenon of beat formation has been observed for the ranges 0.9 ≤ fr ≤ 0.99 and 1.2 ≤ fr ≤ 1.4. Although the observed modulation of sound waves varies significantly with the forcing frequency-ratio, the net radiated sound power has almost remained constant in the nonbeating, nonsynchronous zone. Furthermore, it is confirmed that the dominant sound modes obtained during the proper orthogonal decomposition of disturbance pressure fields in the nonsynchronous zone are related to the shedding frequency-ratio, the forcing frequency-ratio, and their linear combinations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.