Abstract
During locomotion spinal short latency reflexes are rhythmically modulated and depressed compared to rest. In adults this modulation is severely disturbed after bilateral spinal lesions indicating a role for supra-spinal control. Soleus reflex amplitudes are large in the stance phase and suppressed in the swing phase contributing to the reciprocal muscle activation pattern required for walking. In early childhood the EMG pattern during gait underlies an age-dependent process changing from co-contraction of agonists and antagonists to a reciprocal pattern at the age of 5-7 years. It is unknown whether at this stage apart from the EMG also reflexes are modulated, and if so, whether the reflex modulation is fully mature or still underlies an age-dependent development. This may give important information about the maturation of CNS structures involved in gait control. Soleus Hoffmann H-reflexes were investigated in 36 healthy children aged 7-16 years during treadmill walking at 1.2 km/h and 3.0 km/h. At 7 years old a rhythmic modulation similar to adults was observed. The H-reflex size during the stance phase decreased significantly with age while the maximum H-reflex (H (max)) at rest remained unchanged. At 3.0 km/h H-reflexes were significantly larger during the stance phase and smaller during the swing phase as compared to 1.2 km/h but the age-dependent suppression was observed at both walking velocities. In conclusion H-reflex modulation during gait is already present in young children but still underlies an age-dependent process independent of the walking velocity. The finding that the rhythmic part of the modulation is already present at the age of 7 years may indicate that the supra-spinal structures involved mature earlier than those involved in the tonic reflex depression. This may reflect an increasing supra-spinal control of spinal reflexes under functional conditions with maturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.