Abstract

In this work, Fe83-xB10P4C2Cu1Vx (x = 0, 0.5, 1, 2) amorphous alloys were designed and prepared to further enhance the soft magnetic properties of the alloys. The effects of V addition on the thermal stability, the soft magnetic properties, and the microstructure after annealing treatment were investigated systematically. The results show that it effectively enhances the thermal stability of the amorphous alloys, as evidenced by the obvious increase of the onset crystallization temperature. Proper annealing near onset crystallization temperature can obtain uniformly distributed nanocrystalline particles in the amorphous substrate, which is helpful to modulate the soft magnetic properties of the alloy. The amorphous/nanocrystalline composite structure that generated in 5 min annealing will further enhance the saturation magnetization of the Fe82.5B10P4C2Cu1V0.5 alloy from 162.5 Am2/kg to 172.2 Am2/kg, and significantly ameliorate the coercivity from 3440 A/m to 1430 A/m, which is obviously optimized compared to that of the as spun alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call