Abstract

Social interactions involve both approach and avoidance toward specific individuals. Currently, the brain regions subserving these behaviors are not fully recognized. The anterior hypothalamic nucleus (AHN) is a poorly defined brain area, and recent studies have yielded contradicting conclusions regarding its behavioral role. Here we explored the role of AHN neuronal activity in regulating approach and avoidance actions during social interactions. Using electrophysiological recordings from behaving mice, we revealed that theta rhythmicity in the AHN is enhanced during affiliative interactions, but decreases during aversive ones. Moreover, the spiking activity of AHN neurons increased during the investigation of social stimuli, as compared to objects, and was modulated by theta rhythmicity. Finally, AHN optogenetic stimulation during social interactions augmented the approach toward stimuli associated with the stimulation. These results suggest the role for AHN neural activity in regulating approach behavior during social interactions, and for theta rhythmicity in mediating the valence of social stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.