Abstract

Radiation-induced fibrosis is a common side-effect of cancer treatment. The pathophysiological events leading to fibrosis are not known in detail. We analysed the effect of therapeutic irradiation on human skin collagen synthesis, skin thickness, gelatinases and their inhibitors. Twenty randomly chosen women who had been treated for breast cancer with surgery and radiation therapy participated in the study. In each patient, the irradiated skin area was compared with a corresponding non-treated skin area. Suction blister fluid (SBF) and serum samples were analysed for the aminoterminal propeptides of type I and type III procollagens (PINP and PIIINP), tissue inhibitors of matrix metalloproteinases (MMPs) 1 and 2 (TIMP-1 and TIMP-2) and MMP-9 and MMP-2/TIMP-2 complex. Skin biopsies were analysed for PINP and immunohistochemical staining was used for PIIINP. In irradiated skin, PINP, PIIINP, TIMP-1 and MMP-2/TIMP-2 complex levels in SBF and the number of PINP-positive fibroblasts in tissue sections were significantly higher in comparison with non-treated skin. The levels of TIMP-2 in irradiated and non-irradiated skin were similar. MMP-9 could not be detected in SBF with the assay used. The serum levels of MMP-9 were higher in the treated subjects than the reference values. The serum values of PINP, PIIINP, TIMP-1, TIMP-2 and MMP-2/TIMP-2 complex were not significantly affected. These results indicate increased local collagen synthesis and accumulation of connective tissue in irradiated skin. The marked upregulation of collagen synthesis as a result of irradiation offers a possibility to treat this complication with compounds such as topical steroids which downregulate collagen synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.