Abstract
The paper concentrates on the evolution of a spectrum of short wind waves (SW) along the profile of a long surface wave (LW). Short wave spectral variations are considered in the relaxation approximation. The SW spectrum is modulated by the orbital velocities of long waves and by the variations of wind stress along the LW profile. The latter effect occurs due to wind flux perturbations induced by both the long wave proper and variations of the sea surface roughness induced by the SW modulations. To describe this effect, a feedback mechanism is introduces—the growth of energy of short waves results in the larger roughness of the sea surface, thereby contributing to the local wind stress, which facilitates, in turn, the growth of short waves. With moderate and strong winds being involved, this effect (aerodynamic feedback) is shown to be dominant in the short wave spectrum modulation. The mechanism becomes more efficient with intensification of the wind and decreasing of the long waves' frequency. Results of model calculations are in agreement with the known experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.