Abstract

Controlling the mechanism of self-assembly in proteins has emerged as a potent tool for various biomedical applications. Silk fibroin self-assembly consists of gradual conformational transition from random coil to β-sheet structure. In this work we elucidated the intermediate secondary conformation in the presence of Ca(2+) ions during fibroin self-assembly. The interaction of fibroin and calcium ions resulted in a predominantly α-helical intermediate conformation, which was maintained to certain extent even in the final conformation as illustrated by circular dichroism and attenuated total reflectance-Fourier transform infrared spectroscopy. Further, to elucidate the mechanism behind this interaction molecular modeling of the N-terminal region of fibroin with Ca(2+) ions was performed. Negatively charged glutamate and aspartate amino acids play a key role in the electrostatic interaction with positively charged calcium ions. Therefore, insights about modulation of self-assembly mechanism of fibroin could potentially be utilized to develop silk-based biomaterials consisting of the desired secondary conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.