Abstract

In cardiac myocytes, glycolysis and excitation-contraction (E-C) coupling are functionally coupled. We studied the effects of inhibitors (2-deoxy-D-glucose (2-DG), iodoacetate (IAA)), intermediates (glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP)) and products (pyruvate, L-lactate) of glycolysis on sarcoplasmic reticulum (SR) Ca(2+) release and uptake in intact and permeabilized cat atrial myocytes. In field-stimulated (0.5-0.7 Hz) intact myocytes, 2-DG (10 mm) and IAA (1 mm) caused elevation of diastolic [Ca(2+)](i) and [Ca(2+)](i) transient alternans (Ca(2+) alternans) followed by a decrease of the amplitude of the [Ca(2+)](i) transient. Focal application of 2-DG resulted in local Ca(2+) alternans that was confined to the region of exposure. 2-DG and IAA slowed the decay kinetics of the [Ca(2+)](i) transient and delayed its recovery (positive staircase) after complete SR depletion, suggesting impaired activity of the SR Ca(2+)-ATPase (SERCA). 2-DG and IAA reduced the rate of reuptake of Ca(2+) into the SR which was accompanied by a 15-20% decrease of SR Ca(2+) load. Major changes of mitochondrial redox state (measured as FAD autofluorescence) were not observed after inhibition of glycolysis. Pyruvate (10 mm) and L-lactate (10 mm) elicited similar changes of the [Ca(2+)](i) transient. Pyruvate, L-lactate and IAA - but not 2-DG - induced intracellular acidosis. Recording of single channel activity of ryanodine receptors (RyRs) incorporated into lipid bilayers revealed complex modulation by glycolytic intermediates and products (1 mm each): some were without effect (G6P, PEP, L-lactate) while others either increased (F6P, +40%; FBP, +265%) or decreased (pyruvate, -58%) the open probability of the RyR. Consistent with these findings, spontaneous SR Ca(2+) release (Ca(2+) sparks) in permeabilized myocytes was facilitated by FBP and inhibited by pyruvate. The results indicate that in atrial myocytes glycolysis regulates Ca(2+) release from the SR by multiple mechanisms including direct modulation of RyR activity by intermediates and products of glycolysis and modulation of SERCA activity through local changes of glycolytically derived ATP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.