Abstract

Hypertension, atherosclerosis, and resultant chronic heart failure (HF) reach epidemic proportions among older persons, and the clinical manifestations and the prognoses of these worsen with increasing age. Thus, age per se is the major risk factor for cardiovascular disease. Changes in cardiac cell phenotype that occur with normal aging, as well as in HF associated with aging, include deficits in ss-adrenergic receptor (ss-AR) signaling, increased generation of reactive oxygen species (ROS), and altered excitation-contraction (EC) coupling that involves prolongation of the action potential (AP), intracellular Ca(2+) (Ca(i)(2+)) transient and contraction, and blunted force- and relaxation-frequency responses. Evidence suggests that altered sarcoplasmic reticulum (SR) Ca(2+) uptake, storage, and release play central role in these changes, which also involve sarcolemmal L-type Ca(2+) channel (LCC), Na(+)-Ca(2+) exchanger (NCX), and K(+) channels. We review the age-associated changes in the expression and function of Ca(2+) transporting proteins, and functional consequences of these changes at the cardiac myocyte and organ levels. We also review sexual dimorphism and self-renewal of the heart in the context of cardiac aging and HF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.