Abstract

The multi-joint coordination responsible for maintaining upright posture in the standing human manifests in the pattern of variation of the support-surface force (F). Assessment of both the translational and rotational kinematics in the sagittal-plane requires understanding the critical relationship between the direction and location of F. Prior work demonstrated that band-pass filtered F direction and center-of-pressure (CoP) covary in time such that the F vector lines-of-action pass near a fixed point called an intersection point (IP). The height of that IP (IPz) varies systematically with the frequency of the pass band. From F measurements in able-bodied humans (n = 17) standing on various pitched surfaces, the present study also found the emergent property of an IP, with IPz located above the center of mass (CoM) at frequencies <1.75 Hz and below the CoM for higher frequencies. This property aids in maintaining upright posture for various perturbation modes within a single control structure. From purely mechanical effects, standing on a pitched surface should not change IPz, however these measurements of F show that IPz is generally closer to CoM height. This characterization of quiet standing provides simple means of assessing the complex multi-joint coordination of standing and relates directly to the physical demands of controlling the translational and rotational aspects of body posture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call