Abstract

Retinal photoreceptors permit visual perception over a wide range of lighting conditions. Rods work best in dim, and cones in bright environments, with considerable functional overlap at intermediate (mesopic) light levels. At many sites in the outer and inner retina where rod and cone signals interact, gap junctions, particularly those containing Connexin36, have been identified. However, little is known about the dynamic processes associated with the convergence of rod and cone system signals into ON- and OFF-pathways. Here we show that proper cone vision under mesopic conditions requires rapid adaptational feedback modulation of rod output via hyperpolarization-activated and cyclic nucleotide-gated channels 1. When these channels are absent, sustained rod responses following bright light exposure saturate the retinal network, resulting in a loss of downstream cone signalling. By specific genetic and pharmacological ablation of key signal processing components, regular cone signalling can be restored, thereby identifying the sites involved in functional rod-cone interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call