Abstract

Background Numerous experimental and clinical studies suggest that brief opioid exposure can enhance pain sensitivity. It is suggested that spinal cyclooxygenase activity may contribute to the development and expression of opioid tolerance. The aim of the investigation was to determine analgesic and antihyperalgesic properties of the cyclooxygenase-2 inhibitor parecoxib on remifentanil-induced hypersensitivity in humans. Methods Fifteen healthy male volunteers were enrolled in this randomized, double-blind, placebo-controlled study in a crossover design. Transcutaneous electrical stimulation at high current densities was used to induce spontaneous acute pain (numeric rating scale 6 of 10) and stable areas of pinprick hyperalgesia. Pain intensities and areas of hyperalgesia were assessed before, during, and after a 30-min intravenous infusion of remifentanil (0.1 microg x kg x min) or placebo (saline). Parecoxib (40 mg) was administered intravenously either with onset of electrical stimulation (preventive) or in parallel to the remifentanil infusion. Results Remifentanil reduced pain and mechanical hyperalgesia during the infusion, but upon withdrawal, pain and hyperalgesia increased significantly above control level. Preventive administration of parecoxib led to an amplification of remifentanil-induced antinociceptive effects during the infusion (71.3 +/- 7 vs. 46.4 +/- 17% of control) and significantly diminished the hyperalgesic response after withdrawal. In contrast, parallel administration of parecoxib did not show any modulatory effects on remifentanil-induced hyperalgesia. Conclusion The results confirm clinically relevant interaction of mu opioids and prostaglandins in humans. Adequate timing seems to be of particular importance for the antihyperalgesic effect of cyclooxygenase-2 inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.