Abstract

BackgroundNudix hydrolases play a key role in maintaining cellular homeostasis by hydrolyzing various nuceloside diphosphate derivatives and capped mRNAs. Several independent studies have demonstrated that Arabidopsis nudix hydrolase 7 (AtNUDT7) hydrolyzes NADH and ADP-ribose. Loss of function Atnudt7-1 mutant plants (SALK_046441) exhibit stunted growth, higher levels of reactive oxygen species, enhanced resistance to pathogens. However, using the same T-DNA line, two other groups reported that mutant plants do not exhibit any visible phenotypes. In this study we analyze plausible factors that account for differences in the observed phenotypes in Atnudt7. Secondly, we evaluate the biochemical and molecular consequences of increased NADH levels due to loss of function of AtNUDT7 in Arabidopsis.ResultsWe identified a novel conditional phenotype of Atnudt7-1 knockout plants that was contingent upon nutrient composition of potting mix. In nutrient-rich Metro-Mix, there were no phenotypic differences between mutant and wild-type (WT) plants. In the nutrient-poor mix (12 parts vermiculite: 3 parts Redi-earth and 1 part sand), mutant plants showed the characteristic stunted phenotype. Compared with WT plants, levels of glutathione, NAD+, NADH, and in turn NADH:NAD+ ratio were higher in Atnudt7-1 plants growing in 12:3:1 potting mix. Infiltrating NADH and ADP-ribose into WT leaves was sufficient to induce AtNUDT7 protein. Constitutive over-expression of AtNudt7 did not alter NADH levels or resistance to pathogens. Transcriptome analysis identified nearly 700 genes differentially expressed in the Atnudt7-1 mutant compared to WT plants grown in 12:3:1 potting mix. In the Atnudt7-1 mutant, genes associated with defense response, proteolytic activities, and systemic acquired resistance were upregulated, while gene ontologies for transcription and phytohormone signaling were downregulated.ConclusionsBased on these observations, we conclude that the differences observed in growth phenotypes of the Atnudt7-1 knockout mutants can be due to differences in the nutrient composition of potting mix. Our data suggests AtNUDT7 plays an important role in maintaining redox homeostasis, particularly for maintaining NADH:NAD+ balance for normal growth and development. During stress conditions, rapid induction of AtNUDT7 is important for regulating the activation of stress/defense signaling and cell death pathways.

Highlights

  • Nudix hydrolases play a key role in maintaining cellular homeostasis by hydrolyzing various nuceloside diphosphate derivatives and capped mRNAs

  • Based on these observations, we conclude that the differences observed in growth phenotypes of the Atnudt7-1 knockout mutants can be due to differences in the nutrient composition of potting mix

  • Our data suggests AtNUDT7 plays an important role in maintaining redox homeostasis, for maintaining NADH: NAD+ balance for normal growth and development

Read more

Summary

Introduction

Nudix hydrolases play a key role in maintaining cellular homeostasis by hydrolyzing various nuceloside diphosphate derivatives and capped mRNAs. Nudix (nucleoside diphosphates linked to moiety X) hydrolases play a vital role in cellular homeostasis by catalyzing the hydrolysis of a variety of nucleoside diphosphate derivatives including NADH, NAD+, ADPribose, NTPs, dNTPs, phosphoinositol derivatives, and capped mRNAs [15]. Since these substrates have regulatory roles or may be toxic, nudix hydrolases play a key role in signaling and house-cleaning processes. It was shown that over-expression of AtNUDT2, an ADP-ribose pyrophosphatase, confers enhanced tolerance to oxidative stress [20] This enhanced tolerance was attributed to maintenance of NAD and ATP levels by nucleotide recycling from free ADP-ribose under stress conditions [20]. Over-expression of AtNudt (P35s: AtNUDT7) led to a decrease in both NADH and ADP-ribose levels, whereas in a T-DNA knockout line, Atnudt, (SALK_046441), the levels of these two metabolites were higher than wild-type (WT) plants grown under the same conditions, suggesting that both NADH and ADP-ribose are physiological substrates of this protein [22]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.