Abstract

The small energy density and chemomechanical degradation of layered manganese oxide limit practical application to sodium-ion batteries (SIBs). Typically, Na2Mn3O7 shows a low redox plateau at 2.1 V versus Na/Na+, and the oxygen redox reaction at a high voltage causes structural collapse. Herein, a Na vacancy-induced boron doping strategy is demonstrated to improve the properties. Boron is incorporated into selective sites in the lattice in the center of the MnO6 octahedral ring at the O-layer. Bonding of boron in the TM layer enhances the electrochemical activity of low-valence Mn, giving rise to two reversible redox peaks at 2.45 and 2.55 V to enhance the average redox voltage. At the same time, the O 2p chemical state becomes weaker around the Fermi level, thus suppressing oxygen overoxidation for the high charge state and strengthening the layered structure during the redox reactions. The reduced Mn-O covalency and small diffusion barrier energy stemming from bonding of boron in the oxygen layer produce excellent rate characteristics. Modulation of the Mn 3d and O 2p orbital in Na2Mn3O7 by Na vacancies leads to selective doping of boron at different sites, and our results reveal that it is an important strategy for studying transition-metal-oxide-layered electrode materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call