Abstract

Radiation of the esophagus of C3H/HeNsd mice with 35 or 37 Gy of 6 MV X rays induces significantly increased RNA transcription for interleukin 1 (Il1), tumor necrosis factor alpha (Tnf), interferon gamma inducing factor (Ifngr), and interferon gamma (Ifng). These elevations are associated with DNA damage that is detectable by a comet assay of explanted esophageal cells, apoptosis of the esophageal basal lining layer cells in situ, and micro-ulceration leading to dehydration and death. The histopathology and time sequence of events are comparable to the esophagitis in humans that is associated with chemoradiotherapy of non-small cell lung carcinoma (NSCLC). Intraesophageal injection of clinical-grade manganese superoxide dismutase-plasmid/liposome (SOD2-PL) 24 h prior to irradiation produced an increase in SOD2 biochemical activity in explanted esophagus. An equivalent therapeutic plasmid weight of 10 microgram ALP plasmid in the same 500 microliter of liposomes, correlated to around 52-60% of alkaline phosphatase-positive cells in the squamous layer of the esophagus at 24 h. Administration of SOD2-PL prior to irradiation mediated a significant decrease in induction of cytokine mRNA by radiation and decreased apoptosis of squamous lining cells, micro-ulceration, and esophagitis. Groups of mice receiving 35 or 37 Gy esophageal irradiation by a technique protecting the lungs and treating only the central mediastinal area were followed to assess the long-term effects of radiation. SOD2-PL-treated irradiated mice demonstrated a significant decrease in esophageal wall thickness at day 100 compared to irradiated controls. Mice with orthotopic thoracic tumors composed of 32D-v-abl cells that received intraesophageal SOD2-PL treatment showed transgenic mRNA in the esophagus at 24 h, but no detectable human SOD2 transgene mRNA in explanted tumors by nested RT-PCR. These data provide support for translation of this strategy of SOD2-PL gene therapy to studies leading to a clinical trial in fractionated irradiation to decrease the acute and chronic side effects of radiation-induced damage to the esophagus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.