Abstract

Parasympathetic control of murine urinary bladder consists of contractile components mediated by both muscarinic and purinergic receptors. Using intracellular recording techniques, the purinergic component of transmission was measured as both evoked excitatory junctional potentials (EJPs) in response to electrical field stimulation and spontaneous events [spontaneous EJPs (sEJPs)]. EJPs, but not sEJPs, were abolished by the application of the Na(+) channel blocker tetrodotoxin and the Ca(2+) channel blocker Cd(2+). Both EJPs and sEJPs were abolished by the application of the P2X(1) antagonist 8,8'-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt (NF279). Application of phorbol dibutyrate (PDBu) increased electrically evoked EJP amplitudes with no effect on mean sEJP amplitudes. Similar increases in EJP amplitudes were produced by PDBu in the presence of either the nonselective protein kinase inhibitor staurosporine or the specific protein kinase C (PKC) inhibitor 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) maleimide (GF109203X). These results suggest that PDBu increases the purinergic component of detrusor transmission through increasing neurogenic ATP release via a PKC-independent mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call