Abstract
The protein kinase C (PKC) family of isoenzymes plays a key role in the regulation of hepatocellular secretion. The hydrophobic and cholestatic bile acid, taurolithocholic acid (TLCA), acts as a potent Ca++ agonist in isolated hepatocytes. However, its effect on PKC isoforms has not been elucidated. Here we investigate the effects of TLCA at low micromolar concentrations on the distribution of PKC isoforms and on membrane-associated PKC activity. The distribution of PKC isoforms was determined in isolated rat hepatocytes in short-term culture using Western blotting and immunofluorescence techniques. PKC activity was measured radiochemically. TLCA (10 micromol/L) induced selective translocation of epsilon-PKC by 47.9% +/- 20.5% (P <.02 vs. controls; n = 7), but not of alpha-, delta-, and zeta-PKC to the hepatocellular membranes, whereas the phorbol ester, phorbol 12-myristate 13-acetate (PMA) (1 micromol/L) caused translocation of all mobile isoforms, alpha-, delta-, and epsilon-PKC, as shown by immunoblotting. Immunofluorescence studies demonstrated selective translocation of epsilon-PKC to the canalicular membranes of isolated rat hepatocyte couplets by TLCA (10 micromol/L), but predominant translocation to intracellular and basolateral membranes by PMA (1 micromol/L). Both TLCA (10 micromol/L) and PMA (1 micromol/L) stimulated membrane-bound PKC activity by 60.5% +/- 45. 8% (P <.05 vs. controls; n = 5) and 72.4% +/- 37.2% (P <.05; n = 5), respectively. TLCA at lower concentrations (5 micromol/L) was less effective. Because activation of epsilon-PKC has been associated with impairment of vesicle-mediated targeting and insertion of membrane proteins in secretory cells, it is attractive to speculate that TLCA reduces bile secretory capacity of the liver cell by activation of epsilon-PKC at the canalicular membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.