Abstract

To determine whether the renal vascular effect of arginine vasopressin (AVP) is modulated by renal prostaglandin E 2 (PGE 2) were determined during the infusion of AVP in dogs during control conditions and after the administration of the inhibitor of prostaglandin synthesis, indomethacin. During control conditions, intrarenal administration for 10 min of a dose of AVP calculated to increase arterial renal plasma AVP concentration by 75 pg/ml produced a slight renal vasodilation (p<0.01) and an increase in renal venous plasma concentration of PGE 2. Renal venous PGE 2 concentration during control and AVP infusion averaged 33 ± 7 and 52 ± 12 pg/ml (p<0.05), respectively. After administration of indomethacin, the same dose of AVP induced renal vasoconstriction (p<0.05) and failed to enhance renal venous PGE 2 concentration (9 ± 1 to 8 ± 1 pg/ml). Intrarenal administration of 20 ng/kg. min of AVP for 10 min induced a marked renal vasoconstriction (p<0.01) and increased renal venous plasma PGE 2. Renal venous PGE 2 during control and AVP infusion averaged 31 ± 10 and 121 ± 31 pg/ml (p<0.01), respectively. Administration of the same dose of AVP following indomethacin produced a significantly greater and longer lasting renal vasoconstriction (p<0.01) and failed to increase renal venous plasma PGE 2 (10 ± 1 to 9 ± 1 pg/ml). These results indicate that a concentration of AVP comparable to that observed in several pathophysiological conditions induces a slight renal vasodilation which is mediated by renal prostaglandins. The results also indicate that higher doses of AVP induce renal vasoconstriction and that prostaglandin synthesis induced by AVP attenautes the renal vasoconstriction produced by this peptide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.