Abstract

Background: Host-derived (LL-37) and synthetic (WLBU-2) cationic antimicrobial peptides (CAPs) are known for their membrane-active bactericidal properties. LL-37 is an important mediator for immunomodulation, while the mechanism of action of WLBU-2 remains unclear. Objective: To determine if WLBU-2 induces an early proinflammatory response that facilitates bacterial clearance in cystic fibrosis (CF). Methods: C57BL6 mice were given intranasal or intraperitoneal 1×10 6 cfu/mL Pseudomonas aeruginosa (PA) and observed for 2h, followed by instillation of LL-37 or WLBU-2 (2-4mg/kg) with subsequent tissue collection at 24h for determination of bacterial colony counts and quantitative RT-PCR measurement of cytokine transcripts. CF airway epithelial cells (IB3-1, ΔF508/W1282X) were cultured in appropriate media with supplements. WLBU-2 (25μM) was added to the media with RT-PCR measurement of TNF-α and IL-1β transcripts after 20, 30, and 60min. Flow cytometry was used to determine if WLBU-2 assists in cellular uptake of Alexa 488-labeled LPS. Results: In murine lung exposed to intranasal or intraperitoneal WLBU-2, there was a reduction in the number of surviving PA colonies compared to controls. Murine lung exposed to intraperitoneal WLBU-2 showed fewer PA colonies compared to LL-37. After 24h WLBU-2 exposure, PA-induced IL-1β transcripts from lungs showed a twofold decrease (p<0.05), while TNF-α levels were unchanged. LL-37 did not significantly change transcript levels. In IB3-1 cells, WLBU-2 exposure resulted in increased TNF-α and IL-1β transcripts that decreased by 60min. WLBU-2 treatment of IB3-1 cells displayed increased LPS uptake, suggesting a potential role for CAPs in inducing protective proinflammatory responses. Taken together, the cytokine response, LPS uptake, and established antimicrobial activity of WLBU-2 demonstrate its ability to modulate proinflammatory signaling as a protective mechanism to clear infection. Conclusions: The immunomodulatory properties of WLBU-2 reveal a potential mechanism of its broad-spectrum antibacterial activity and warrant further preclinical evaluation to study bacterial clearance and rescue of chronic inflammation.

Highlights

  • Cationic antimicrobial peptides (CAPs) are one effector of the innate immune response, the “first line of defense” against a pathogenic insult

  • WLBU-2-exposed cells showed significantly less IL-8 promoter activity compared to LL-37-exposed cells (p

  • Using equimolar (25μM) peptide concentrations in LPS-stimulated cells, WLBU-2 showed less LPS-induced IL-8 reporter activity compared to LL-37 after 4h

Read more

Summary

Introduction

Cationic antimicrobial peptides (CAPs) are one effector of the innate immune response, the “first line of defense” against a pathogenic insult They are ancient, structurally diverse elements of the immune responses of all living species. These molecules typically have broad-spectrum antimicrobial activity with conserved recognition patterns to molecules such as lipopolysaccharide (LPS) and lipoteichoic acid. After 24h WLBU-2 exposure, PA-induced IL-1β transcripts from lungs showed a twofold decrease (p

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.