Abstract

Voltage-gated K+ (KV ) and Ca2+ -activated K+ (KCa ) channels are essential proteins for membrane repolarization in excitable cells. They also play important physiological roles in non-excitable cells. Their diverse physiological functions are in part the result of their auxiliary subunits. Auxiliary subunits can alter the expression level, voltage dependence, activation/deactivation kinetics, and inactivation properties of the bound channel. KV and KCa channels are activated by membrane depolarization through the voltage-sensing domain (VSD), so modulation of KV and KCa channels through the VSD is reasonable. Recent cryo-EM structures of the KV or KCa channel complex with auxiliary subunits are shedding light on how these subunits bind to and modulate the VSD. In this review, we will discuss four examples of auxiliary subunits that bind directly to the VSD of KV or KCa channels: KCNQ1-KCNE3, Kv4-DPP6, Slo1-β4, and Slo1-γ1. Interestingly, their binding sites are all different. We also present some examples of how functionally critical binding sites can be determined by introducing mutations. These structure-guided approaches would be effective in understanding how VSD-bound auxiliary subunits modulate ion channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call