Abstract

The locus coeruleus (LC) is activated by noxious stimuli, and this activation leads to inhibition of perceived pain. As two physiological reflexes, the acoustic startle reflex and the pupillary light reflex, are sensitive to noxious stimuli, this review considers evidence that this sensitivity, at least to some extent, is mediated by the LC. The acoustic startle reflex, contraction of a large body of skeletal muscles in response to a sudden loud acoustic stimulus, can be enhanced by both directly (“sensitization”) and indirectly (“fear conditioning”) applied noxious stimuli. Fear-conditioning involves the association of a noxious (unconditioned) stimulus with a neutral (conditioned) stimulus (e.g., light), leading to the ability of the conditioned stimulus to evoke the “pain response”. The enhancement of the startle response by conditioned fear (“fear-potentiated startle”) involves the activation of the amygdala. The LC may also be involved in both sensitization and fear potentiation: pain signals activate the LC both directly and indirectly via the amygdala, which results in enhanced motoneurone activity, leading to an enhanced muscular response. Pupil diameter is under dual sympathetic/parasympathetic control, the sympathetic (noradrenergic) output dilating, and the parasympathetic (cholinergic) output constricting the pupil. The light reflex (constriction of the pupil in response to a light stimulus) operates via the parasympathetic output. The LC exerts a dual influence on pupillary control: it contributes to the sympathetic outflow and attenuates the parasympathetic output by inhibiting the Edinger-Westphal nucleus, the preganglionic cholinergic nucleus in the light reflex pathway. Noxious stimulation results in pupil dilation (“reflex dilation”), without any change in the light reflex response, consistent with sympathetic activation via the LC. Conditioned fear, on the other hand, results in the attenuation of the light reflex response (“fear-inhibited light reflex”), consistent with the inhibition of the parasympathetic light reflex via the LC. It is suggested that directly applied pain and fear-conditioning may affect different populations of autonomic neurones in the LC, directly applied pain activating sympathetic and fear-conditioning parasympathetic premotor neurones.

Highlights

  • The locus coeruleus (LC) has been implicated in a number of physiological and psychological functions

  • The phenomenon of sensitization is consistent with the enhancement of LC activity evoked by the noxious stimulus, which in turn would lead to increased motoneurone response at the final step in the acoustic startle response pathway

  • The two reflexes have very different mechanisms and underlying neuronal circuitries, they are both under modulation by the LC, which itself is sensitive to noxious stimulation, and via its widespread projections influences many somatic and autonomic functions

Read more

Summary

Elemer Szabadi *

Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Nottingham, UK. The acoustic startle reflex, contraction of a large body of skeletal muscles in response to a sudden loud acoustic stimulus, can be enhanced by both directly (“sensitization”) and indirectly (“fear conditioning”) applied noxious stimuli. The enhancement of the startle response by conditioned fear (“fear-potentiated startle”) involves the activation of the amygdala. The LC may be involved in both sensitization and fear potentiation: pain signals activate the LC both directly and indirectly via the amygdala, which results in enhanced motoneurone activity, leading to an enhanced muscular response. The LC exerts a dual influence on pupillary control: it contributes to the sympathetic outflow and attenuates the parasympathetic output by inhibiting the Edinger-Westphal nucleus, the preganglionic cholinergic nucleus in the light reflex pathway. Noxious stimulation results in pupil dilation (“reflex dilation”), without any change in the light reflex response, consistent with sympathetic activation via the LC.

INTRODUCTION
ACOUSTIC STARTLE REFLEX
MODULATION OF THE PUPILLARY LIGHT REFLEX BY THE LC
CONCLUSIONS AND CLINICAL IMPLICATIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call