Abstract
Motor-cognitive training and exergaming often only reach low-to-medium intensities that limits their training efficiency. This study evaluated the physiological profile of different exercises on a novel motor-cognitive training technology designed to cover a broad range of exercise intensities. Twenty-six healthy trained adults (17 males, 23.7 ± 3.8 years) performed five motor-cognitive training tasks on the SKILLCOURT technology. Oxygen consumption (VO2), heart rate (HR), blood [lactate], perceived physical exertion (RPE) responses, and metabolic equivalent (MET) were assessed and compared to an incremental treadmill ramp test determining the maximal oxygen consumption (VO2max) and maximal heart rate (HRmax). Computer-based cognitive training served as control condition. Motor-cognitive exercises reached a higher %VO2max and %HRmax levels when compared to computer-based training (p < 0.001). Average intensity varied significantly between motor-cognitive tasks, with %VO2max ranging from 22% to 81% (p < 0.001), %HRmax from 49% to 89% (p < 0.001), METs from 3.57 to 13.37 (p < 0.001), blood [lactate] from 0.93 to 7.81 mmol·L-1 (p < 0.001), and RPE from 8.5 to 16.4 (p < 0.001). Motor-cognitive training covers a wide range of exercise intensities. This supports individual training subscription and allows high-intensity training to facilitate cardio-vascular adaptations and neural plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.