Abstract

Modulation of the efficiency with which leaves convert absorbed light to photochemical energy [intrinsic efficiency of open photosystem II (PSII) centers, as the ratio of variable to maximal chlorophyll fluorescence] as well as leaf xanthophyll composition (interconversions of the xanthophyll cycle pigments violaxanthin and zeaxanthin) were characterized throughout single days and nights to entire seasons in plants growing naturally in contrasting light and temperature environments. All pronounced decreases of intrinsic PSII efficiency took place in the presence of zeaxanthin. The reversibility of these PSII efficiency changes varied widely, ranging from reversible-within-seconds (in a vine experiencing multiple sunflecks under a eucalypt canopy) to apparently permanently locked-in for entire seasons (throughout the whole winter in a subalpine conifer forest at 3,000m). While close association between low intrinsic PSII efficiency and zeaxanthin accumulation was ubiquitous, accompanying features (such as trans-thylakoid pH gradient, thylakoid protein composition, and phosphorylation) differed among contrasting conditions. The strongest and longest-lasting depressions in intrinsic PSII efficiency were seen in the most stress-tolerant species. Evergreens, in particular, showed the most pronounced modulation of PSII efficiency and thermal dissipation, and are therefore suggested as model species for the study of photoprotection. Implications of the responses of field-grown plants in nature for mechanistic models are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.