Abstract

Hole trapping at iodine (I) sites in MAPbBr1.5I1.5 mixed halide perovskites (MHP) is responsible for iodine migration and its eventual expulsion into solution. We have now modulated the photoinduced iodine expulsion in MHP through an externally applied electrochemical bias. At positive potentials, electron extraction at TiO2/MHP interfaces becomes efficient, leading to hole buildup within MHP films. This improved charge separation, in turn, favors iodine migration as evident from the increased apparent rate constant of iodine expulsion (kexpulsion = 0.0030 s-1). Conversely, at negative potentials (-0.3 V vs Ag/AgCl) electron-hole recombination is facilitated within MHP, slowing down iodine expulsion by an order of magnitude (kexpulsion = 0.00018 s-1). The tuning of the EFermi level through external bias modulates electron extraction at the TiO2/MHP interface and indirectly controls the buildup of holes, ultimately inducing iodine migration/expulsion. Suppressing iodine migration in perovskite solar cells is important for attaining greater stability since they operate under internal electrical bias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.