Abstract

Multidrug resistance (MDR) is a major obstacle in the chemotherapeutic treatment of many human cancers. In this study, the reversal of P-glycoprotein (P-gp) mediated multidrug resistance by (–)-epigallocatechin gallate (EGCG) and its molecular mechanism were investigated. A three-dimensional model of carboxyl-terminal nucleotide binding domain (NBD2) from P-gp was built by homology modeling. The structural model of the complex indicates that EGCG was tightly bound to the ATP-binding site of NBD2. EGCG modulated the function of P-gp and increased the intracellular accumulation of chemotherapeutic agent doxorubicin (DOX) in drug-resistant KB-A1 cells. When KB-A1 cells were exposed to 10 μg/ml DOX combined with 10, 30, 50 μM EGCG for 4 h, the intracellular concentrations of DOX were increased 1.5, 1.9, 2.3 times, respectively compared with DOX alone treatment. In vitro EGCG potentiated the cytotoxicity of DOX to drug-resistant KB-A1 cells. In KB-A1 cell xenograft model, EGCG could also enhance the efficacy of DOX and increased the DOX concentration in the resistant tumors. Thus, these results suggest that EGCG modulated the function of P-gp and reversed P-gp mediated multidrug resistance in human cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.